Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Chem Biodivers ; 21(2): e202301383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212902

ABSTRACT

Herba Epimedii is widely used to promote bone healing, and their active ingredients are total flavonoids of Epimedium (TFE). Ras homolog gene family member A / Rho-associated protein kinase (RhoA/Rock), an important pathway regulating the cytoskeleton, has been proven to affect bone formation. However, whether TFE promotes bone healing via this pathway remains unclear. In this study, the therapeutic effects of TFE were estimated using micro-computed tomography and hematoxylin and eosin staining of pathological sections. F-actin in osteoblasts was stained to investigate the protective effects of TFE on the cytoskeleton. Its regulatory effects on the RhoA/Rock1 pathway were explored using RT-qPCR and Western blot analysis. Besides, flow cytometry, alkaline phosphatase and nodule calcification staining were performed to evaluate the effects on osteogenesis. The bone healing in rats was improved, the cytoskeletal damage in osteoblasts was reduced, the RhoA/Rock1 pathway was downregulated, and osteogenesis was enhanced after TFE treatment. Thus, TFE can promote bone formation at least partially by regulating the expression of key genes and proteins in the cytoskeleton. The findings of this study provided evidence for clinical applications and would contribute to a better understanding of Epimedium's mechanisms in treating bone defects.


Subject(s)
Drugs, Chinese Herbal , Rats , Animals , X-Ray Microtomography , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Osteogenesis , Cytoskeleton
2.
Phytomedicine ; 124: 155282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176266

ABSTRACT

BACKGROUND: Ferroptosis is a crucial contributor to impaired osteoblast function in osteoporosis. Mangiferin, a xanthonoid glucoside isolated from mangoes, exhibits anti-osteoporosis effects. However, its potential mechanism is not fully understood. PURPOSE: This study explores the potencies of mangiferin on osteoblastic ferroptosis and deciphers its direct target in the context of solute carrier family 7-member 11 (SLC7A11)/glutathione peroxidases 4 (GPX4) pathway. METHODS: In vivo models include bilateral ovariectomy induced osteoporosis mice, iron-dextran induced iron-overloaded mice, and nuclear factor-erythroid 2-related factor 2 (Nrf2)-knockout mice. Mice are orally administrated mangiferin (10, 50 or 100 mg.kg-1.d-1) for 12 weeks. In vitro osteoblast models include iron-dextran induced iron-overloaded cells, erastin induced ferroptosis cells, and gene knockout cells. RNA sequencing is applied for investigating the underlying mechanisms. The direct target of mangiferin is studied using a cellular thermal shift assay, silico docking, and surface plasmon resonance. RESULTS: Mangiferin promotes bone formation and inhibits ferroptosis in vivo models (osteoporosis mice, iron-overloaded mice) and in vitro models (ferroptosis osteoblast, iron-overloaded osteoblasts). Mechanismly, mangiferin directly binds to the kelch-like ECH-associated protein 1 (Keap1) and activates the downstream Nrf2/SLC7A11/GPX4 pathway in both the in vivo and in vitro models. Mangiferin failed to restore the osteoporosis and ferroptosis in Nrf2-knockout mice. Silencing Nrf2, SLC7A11 or GPX4 abolished the anti-ferroptosis effect of mangiferin in erastin-induced cells. Addition of the ferroptosis agonist RSL-3 also blocked the protective effects of mangiferin on iron-overloaded cells. Furthermore, mangiferin had better effects on osteogenesis than the ferroptosis inhibitor (ferrostatin-1) and the Nrf2 agonists (sulforaphane, dimethyl fumarate, and bardoxolone). CONCLUSIONS: We identify for the first time mangiferin as a ferroptosis inhibitor and a direct Keap1 conjugator that promotes bone formation and alleviates osteoporosis. This work also provides a potentially practical pharmacological approach for treating ferroptosis-driven diseases.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2 , Xanthones , Female , Animals , Mice , Kelch-Like ECH-Associated Protein 1 , Phospholipid Hydroperoxide Glutathione Peroxidase , Dextrans , Mice, Knockout , Iron
3.
J Ethnopharmacol ; 319(Pt 2): 117211, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37739100

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Portulaca oleracea L. (PO), popularly known as purslane, has been documented in ethnopharmacology in various countries and regions. Traditional application records indicated that PO might be used extensively to treat the common cold, dysentery, urinary tract infections, coughing, eye infections, skin problems, gynecological diseases, and pediatric illnesses. AIM OF THE REVIEW: This paper includes a systematic review of the traditional usage, phytochemicals, pharmacological activity, and potential uses of PO to provide an overview of the research for further exploitation of PO resources. MATERIALS AND METHODS: This article uses "Portulaca oleracea L." and "purslane" as the keywords and collects relevant information on PO from different databases, including PubMed, Web of Science, Springer, Science Direct, ACS, Wiley, CNKI, Baidu Scholar, Google Scholar, and ancient meteria medica. RESULTS: PO is a member of the Portulacaceae family and is grown worldwide. Traditional Chinese medicine believes that purslane has the effect of improving eyesight, eliminating evil qi, quenching thirst, purgation, diuresis, hemostasis, regulating qi, promoting hair growth, detoxifying, and avoiding epidemic qi. Recent phytochemical investigations have shown that PO is a rich source of flavonoids, homoisoflavonoids, alkaloids, organic acids, esters, lignans, terpenoids, catecholamines, sterols, and cerebrosides. The purslane extracts or compounds have exhibited numerous biological activities such as anti-inflammatory, immunomodulatory, antimicrobial, antiviral, antioxidant, anticancer, renoprotective, hepatoprotective, gastroprotective, metabolic, muscle relaxant, anti-asthmatic and anti-osteoporosis properties. The significant omega-3 fatty acids, vital amino acids, minerals, and vitamins found in purslane also provide nutritional benefits. Purslane as a food/feed additive in the food industry and animal husbandry has caused concern. Its global wide distribution and tolerance to abiotic stress characteristics make it in the future sustainable development of agriculture a certain position. CONCLUSIONS: Based on traditional usage, phytochemicals, and pharmacological activity, PO is a potential medicinal and edible plant with diverse pharmacological effects. Due to purslane's various advantages, it may have vast application potential in the food and pharmaceutical industries and animal husbandry.


Subject(s)
Portulaca , Animals , Child , Humans , Ethnopharmacology , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Portulaca/chemistry
4.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38003376

ABSTRACT

Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.


Subject(s)
Bone Resorption , Osteogenesis , Humans , Osteogenesis/genetics , Signal Transduction , Osteoclasts/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , NF-kappa B , Proto-Oncogene Proteins c-fos/metabolism , NFATC Transcription Factors/genetics , Cell Differentiation/genetics , RANK Ligand
5.
Am J Chin Med ; 51(8): 1957-1981, 2023.
Article in English | MEDLINE | ID: mdl-37884447

ABSTRACT

The gut microbiome (GM) has become a crucial factor that can affect the progression of osteoporosis. A number of studies have demonstrated the impact of Traditional Chinese Medicine (TCM) on GM and bone metabolism. In this review, we summarize the potential mechanisms of the relationship between osteoporosis and GM disorder and introduce several natural Chinese medicines that exert anti-osteoporosis effects by modulating the GM. It is underlined that, through the provision of the microbial associated molecular pattern (MAMP), the GM causes inflammatory reactions and alterations in the Treg-Th17 balance and ultimately leads to changes in bone mass. Serotonin and many hormones, especially estrogen, may play a crucial role in the interaction of the GM with bone metabolism. Additionally, the GM may affect the absorption of specific nutrients in the intestine, particularly minerals like calcium, magnesium, and phosphorus. Several natural Chinese herbs, such as Sambucus Williamsii, Achyranthes bidentata Blume, Pleurotus ostreatus and Ganoderma lucidum mushrooms, Pueraria Lobata, and Agaricus blazei Murill have exhibited anti-osteoporosis effects through regulating the distribution and metabolism of the GM. These herbs may increase the abundance of Firmicutes, decrease the abundance of Bacteroides, promote the GM to produce more SCFAs, modulate the immune response caused by harmful bacteria, and increase the proportion of Treg-Th17 to indirectly affect bone metabolism. Moreover, gut-derived 5-HT is an important target for TCM to prevent osteoporosis via the gut-bone axis. Puerarin could prevent osteoporosis by improving intestinal mucosal integrity and decrease systemic inflammation caused by estrogen deficiency.


Subject(s)
Gastrointestinal Microbiome , Osteoporosis , Humans , Medicine, Chinese Traditional , Osteoporosis/drug therapy , Osteoporosis/metabolism , Bone Density , Inflammation , Estrogens
6.
Metabolites ; 13(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623903

ABSTRACT

Age-related hepatic lipid accumulation has become a major health problem in the elderly population. Specnuezhenide (SPN) is a major active iridoid glycoside from an edible herb Fructus Ligustri Lucidi, which is commonly used for preventing age-related diseases. However, the beneficial effects of SPN on age-related liver injury remain unknown. This study aimed to reveal the effect of SPN on age-related hepatic lipid accumulation and the underlying mechanism. D-galactose (D-gal)-induced aging mice were treated with vehicle or SPN for 12 weeks. Treatment of SPN decreased lipid accumulation and inflammation in the liver of D-gal-induced mice. Untargeted and targeted metabolomics showed that the SPN could regulate the bile acid (BA) synthesis pathway and restore the BA compositions in serum, livers, and feces of the D-gal-induced mice. Furthermore, SPN enhanced the protein and mRNA levels of hepatic BAs synthesis enzymes cytochrome P45027A1, cytochrome P4507A1, cytochrome P4507B1, and cytochrome P4508B1. Meanwhile, SPN alleviated D-gal-induced gut dysbiosis and reversed the proportions of microbes associated with bile salt hydrolase activity, including Lactobacillus, Ruminiclostridium, and Butyrivibrio. Our study revealed that SPN attenuated age-related hepatic lipid accumulation by improving BA profiles via modulating hepatic BA synthesis enzymes and gut microbiota.

7.
J Cell Mol Med ; 27(22): 3601-3613, 2023 11.
Article in English | MEDLINE | ID: mdl-37621124

ABSTRACT

Osteoporosis is a prevalent complication of diabetes, characterized by systemic metabolic impairment of bone mass and microarchitecture, particularly in the spine. Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been extensively employed in Traditional Chinese Medicine to manage diabetes; however, its potential to ameliorate diabetic osteoporosis (DOP) has remained obscure. Herein, we explored the protective efficacy of AR/PCC herb pair against DOP using a streptozotocin (STZ)-induced rat diabetic model. Our data showed that AR/PCC could effectively reduce the elevated fasting blood glucose and reverse the osteoporotic phenotype of diabetic rats, resulting in significant improvements in vertebral trabecular area percentage, trabecular thickness and trabecular number, while reducing trabecular separation. Specifically, AR/PCC herb pair improved impaired osteogenesis, nerve ingrowth and angiogenesis. More importantly, it could mitigate the aberrant activation of osteoblast pyroptosis in the vertebral bodies of diabetic rats by reducing increased expressions of Nlrp3, Asc, Caspase1, Gsdmd and IL-1ß. Mechanistically, AR/PCC activated antioxidant pathway through the upregulation of the antioxidant response protein Nrf2, while concurrently decreasing its negative feedback regulator Keap1. Collectively, our in vivo findings demonstrate that AR/PCC can inhibit osteoblast pyroptosis and alleviate STZ-induced rat DOP, suggesting its potential as a therapeutic agent for mitigating DOP.


Subject(s)
Anemarrhena , Diabetes Mellitus, Experimental , Osteoporosis , Rats , Animals , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Pyroptosis , Anemarrhena/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/pharmacology , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoblasts/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
8.
Polymers (Basel) ; 15(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37242865

ABSTRACT

Natural products have proven their value as drugs that can be therapeutically beneficial in the treatment of various diseases. However, most natural products have low solubility and poor bioavailability, which pose significant challenges. To solve these issues, several drug nanocarriers have been developed. Among these methods, dendrimers have emerged as vectors for natural products due to their superior advantages, such as a controlled molecular structure, narrow polydispersity index, and the availability of multiple functional groups. This review summarizes current knowledge on the structures of dendrimer-based nanocarriers for natural compounds, with a particular focus on applications in alkaloids and polyphenols. Additionally, it highlights the challenges and perspectives for future development in clinical therapy.

9.
Int J Biol Macromol ; 231: 123324, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36657544

ABSTRACT

To discover the polysaccharide with anti-diabetic osteoporosis (DOP) activity and clarify its structure, an arabinomannan (PAAP-1B) with a molecular weight of 14.0 kDa was isolated from Anemarrhena asphodeloides Bge. using column chromatography. It consists of arabinose, mannose, and galactose in a molar ratio of 6:3:1. PAAP-1B has a backbone composed of 1,5-α-Araf, 1,4-ß-Manp, and 1,6-ß-Galp residues that are branched at C3 of α-Araf and ß-Galp residues. The side chains are T-α-Araf, T-α-Manp, T-ß-Galp, and 1,6-ß-Galp. PAAP-1B attenuated DOP and reduced ferroptosis in the femurs and tibias of alloxan-induced mice. It also suppressed ferroptosis in advanced glycation end product-induced osteoblasts by decreasing 4-hydroxynonenal, malondialdehyde, mitochondrial reactive oxidative species levels, and lipid peroxidation, while reversing the downregulation of solute carrier family 7 membrane 11 and glutathione expression.


Subject(s)
Anemarrhena , Mice , Animals , Anemarrhena/chemistry , Polysaccharides/chemistry , Mannans , Galactose
10.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677642

ABSTRACT

As aging progresses, ß-amyloid (Aß) deposition and the resulting oxidative damage are key causes of aging diseases such as senior osteoporosis (SOP). Humulus lupulus L. (hops) is an important medicinal plant widely used in the food, beverage and pharmaceutical industries due to its strong antioxidant ability. In this study, APP/PS1 mutated transgenic mice and Aß-injured osteoblasts were used to evaluate the protective effects of hops extracts (HLE) on SOP. Mice learning and memory levels were assessed by the Morris water maze. Mice femurs were prepared for bone micro-structures and immunohistochemistry experiments. The deposition of Aß in the hippocampus, cortex and femurs were determined by Congo red staining. Moreover, protein expressions related to antioxidant pathways were evaluated by Western blotting. It was found that HLE markedly improved learning abilities and ameliorated memory impairment of APP/PS1 mice, as well as regulated antioxidant enzymes and bone metabolism proteins in mice serum. Micro-CT tests indicated that HLE enhanced BMD and improved micro-architectural parameters of mice femur. More importantly, it was discovered that HLE significantly reduced Aß deposition both in the brain and femur. Further in vitro results showed HLE increased the bone mineralization nodule and reduced the ROS level of Aß-injured osteoblasts. Additionally, HLE increased the expression of antioxidant related proteins Nrf2, HO-1, NQO1, FoxO1 and SOD-2. These results indicated that Humulus lupulus L. extract could protect against senior osteoporosis through inhibiting Aß deposition and oxidative stress, which provides a reference for the clinical application of hops in the prevention and treatment of SOP.


Subject(s)
Alzheimer Disease , Humulus , Osteoporosis , Plant Extracts , Animals , Mice , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Antioxidants/metabolism , Disease Models, Animal , Humulus/chemistry , Mice, Transgenic , Osteoblasts/metabolism , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Oxidative Stress , Presenilin-1/genetics , Presenilin-1/metabolism , Plant Extracts/pharmacology
11.
J Ethnopharmacol ; 302(Pt A): 115898, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36372193

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Ligustri Lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a traditional Chinese medicine that has been used for tonifying the kidney and liver for decades. AIM OF THE STUDY: This study aimed to explore and identify polysaccharides from FLL and elucidate its protective effect against renal fibrosis. MATERIALS AND METHODS: Polysaccharides were extracted and isolated from FLL. The purified fraction was identified by serial phytochemical work, such as gel-permeation chromatography, ion chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance. Mice with unilateral ureteral obstruction (UUO) were applied as a renal fibrosis model. The male UUO mice were pretreated with heteropolysaccharide (Poly) 1 week prior to surgery and continuously treated for 7 days after the operation. Renal fibrosis was assessed by Periodic Acid-Schiff (PAS) staining and Masson's trichrome staining in paraffin-embedded slides. The murine mesangial cells SV40-MES13 upon angiotensin II (Ang II) treatment were developed as an in vitro fibrotic model. The cells were treated by Poly in the presence of Ang II. Molecular expression was detected by RT-PCR, immunoblotting, and immunofluorescence staining. RESULTS: We identified a heteropolysaccharide composed of arabinose and galactose (molar ratio, 0.73:0.27) with a predicted chemical structure characterized by a backbone composed of 1,5-α-Araf, 1,3,5-α-Araf, 1,6-α-Galp, and 1,3,6-ß-Galp and side chains comprised of T-α-Araf, T-α-Arap, and 1,3-α-Araf. Pretreatment of UUO mice with Poly effectively alleviated glomerulosclerosis and tubulointerstitial fibrosis. Moreover, Poly pretreatment down-regulated the expression of extracellular matrix (ECM) protein fibronectin (FN), profibrotic factor VEGF, proinflammatory cytokines MCP-1 and Rantes in the obstructed kidney. Similarly, the incubation of SV40-MES13 cells with Poly significantly inhibited Ang II-induced elevation in accumulation and expression level of FN and attenuated Ang II-evoked up-regulation in protein expression of MCP-1 and Rantes. CONCLUSIONS: Our study isolated and identified a naturally occurring heteropolysaccharide in FLL and revealed its potential in protecting the kidneys from fibrosis.


Subject(s)
Kidney Diseases , Ligustrum , Ureteral Obstruction , Male , Mice , Animals , Ligustrum/chemistry , Chemokine CCL5/metabolism , Fibrosis , Kidney Diseases/drug therapy , Kidney , Ureteral Obstruction/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Angiotensin II/metabolism
12.
Free Radic Biol Med ; 193(Pt 2): 720-735, 2022 11 20.
Article in English | MEDLINE | ID: mdl-36402439

ABSTRACT

Ferroptosis plays an essential role in the pathology of osteoporosis. This study investigated whether vitamin D receptor (VDR) activation could protect against age-related osteoporosis through an anti-ferroptosis mechanism. d-galactose (D-gal)-induced mice and VDR-knockout mice were used in the in-vivo study. The VDR activator (1,25(OH)2D3) attenuated senescence and ferroptosis in the D-gal-induced bone, as illustrated by downregulated senescence-associated secretory phenotype genes, improved mitochondrial morphology, elevated glutathione, and decreased lipid peroxidation markers (malondialdehyde and 4-hydroxynonenal). The pre-osteoblast MC3T3-E1 cells and primary rat osteoblasts were applied in the in-vitro studies. 1,25(OH)2D3 or ferroptosis inhibitor (ferrostatin-1) treatment downregulated the cellular senescence markers in D-gal-induced osteoblasts. Mechanistically, 1,25(OH)2D3 activated the VDR and its downstream nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway, resulting in the downregulation of lipid peroxidation. Nrf2 knockdown or addition of GPX4 inhibitor (RSL-3) blocked the protective effect of 1,25(OH)2D3 against D-gal-induced ferroptosis and senescence. VDR knockdown impeded the 1,25(OH)2D3-induced activation of Nrf2/GPX4 pathway in osteoblasts. Proteomics and immunofluorescence analysis confirmed that ferroptosis and suppression of the Nrf2/GPX4 pathway occurred in VDR-knockout mice. Our data demonstrated that ferroptosis played an essential role in age-related osteoporosis. The VDR activation attenuated osteoblast ferroptosis via stimulating the Nrf2/GPX4 signaling pathway.


Subject(s)
Osteoporosis , Receptors, Calcitriol , Animals , Mice , Rats , Mice, Knockout , NF-E2-Related Factor 2/genetics , Osteoporosis/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase , Receptors, Calcitriol/genetics
13.
Front Pharmacol ; 13: 1014173, 2022.
Article in English | MEDLINE | ID: mdl-36210805

ABSTRACT

Natural alkaloids are polycyclic, nitrogen-containing, and basic compounds obtained from plants. In this review, the advances in bioactive alkaloids with respect to their chemical structures, herbal sources, and effects for the prevention and treatment of osteoporosis are discussed. Anti-osteoporosis alkaloids are classified into six categories based on the chemical structure, namely, isoquinoline alkaloids, quinolizidine alkaloids, piperidine alkaloids, indole alkaloids, pyrrolizidine alkaloids and steroidal alkaloids. They promote mesenchymal stem cells differentiation, improve osteoblast proliferation, stimulate osteoblast autophagy and suppress osteoclast formation. These natural alkaloids can regulate multiple signaling pathways, including interrupting the tumor necrosis factor receptor associated factor 6- receptor activator of nuclear factor kappa B interaction, inhibiting the nuclear factor kappa B pathway in osteoclasts, activating the p38 mitogen-activated protein kinases pathway in osteoblasts, and triggering the wingless and int-1 pathway in mesenchymal stem cells. This review provides evidence and support for novel drug and clinical treatment of osteoporosis using natural alkaloids.

14.
Metabolites ; 12(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36295836

ABSTRACT

Scopoletin, a typical example of a coumarin compound, exists in several Artemisia species and other plant genera. However, the systemic metabolic effects induced by scopoletin remain unclear. In the present study, we evaluated the metabolic profiles in scopoletin-exposed zebrafish embryos using UHPLC-Q-Obitrap-HRMS combined with multivariate analysis. Compared with the control group, 33 metabolites in scopoletin group were significantly upregulated, while 27 metabolites were significantly downregulated. Importantly, scopoletin exposure affected metabolites mainly involved in phosphonate and phosphinate metabolism, vitamin B6 metabolism, histidine metabolism, sphingolipid metabolism, and folate biosynthesis. These results suggested that scopoletin exposure to zebrafish embryos exhibited marked metabolic disturbance. This study provides a perspective of metabolic impacts and the underlying mechanism associated with scopoletin exposure.

15.
Front Pharmacol ; 13: 842101, 2022.
Article in English | MEDLINE | ID: mdl-35721142

ABSTRACT

Alzheimer's disease (AD) and osteoporosis (OP) are progressive degenerative diseases caused by multiple factors, placing a huge burden on the world. Much evidence indicates that OP is a common complication in AD patients. In addition, there is also evidence to show that patients with OP have a higher risk of AD than those without OP. This suggests that the association between the two diseases may be due to a pathophysiological link rather than one disease causing the other. Several in vitro and in vivo studies have also proved their common pathogenesis. Based on the theory of traditional Chinese medicine, some classic and specific natural Chinese medicines are widely used to effectively treat AD and OP. Current evidence also shows that these treatments can ameliorate both brain damage and bone metabolism disorder and further alleviate AD complicated with OP. These valuable therapies might provide effective and safe alternatives to major pharmacological strategies.

16.
Food Funct ; 13(11): 6293-6305, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35611700

ABSTRACT

Chimonanthus salicifolius (CS), the leaves of Chimonanthus salicifolius S. Y. Hu., is an effective tea to prevent and treat hypertension in China. This study aimed to explore the effect and mechanism of CS in the protection against vascular remodeling in hypertension. Spontaneously hypertensive rats (SHRs) were orally administered with aqueous extracts of CS for 6 months. The blood pressure and morphological changes of the aorta were measured. Their mechanisms were studied by combining chemical identification, network pharmacology analysis and validation in vivo. Hypertensive rats showed an impaired vascular structure and dyslipidemia as illustrated by the increase of the vascular media thickness and collagen deposition in the aorta. CS treatment exhibited significant beneficial effects on blood pressure control and aortal morphology. A total of 21 compounds from CS were identified, which were linked to 106 corresponding targeted genes for vascular remodeling. The network pharmacology predicted that CS prevented vascular remodeling through the endoplasmic reticulum stress pathway. The in vivo experiments further showed that CS treatment upregulated Glucose-Regulated Protein 78 and downregulated CCAAT-enhancer-binding protein homologous protein at both mRNA and protein levels, paralleling reduced apoptotic cells in the arterial wall. Additionally, CS diminished the low-density lipoprotein cholesterol levels, total cholesterol contents and triglyceride/high-density lipoprotein cholesterol ratios in the sera of SHRs, which might also contribute to its protection of vessels. Collectively, CS protects against vascular modeling by suppressing endoplasmic reticulum stress-related apoptosis in hypertension, and it could be a potential agent for the prevention and treatment of vascular modeling.


Subject(s)
Calycanthaceae , Hypertension , Animals , Blood Pressure , Cholesterol/pharmacology , Endoplasmic Reticulum Stress , Hypertension/drug therapy , Hypertension/metabolism , Rats , Rats, Inbred SHR , Vascular Remodeling
17.
J Ethnopharmacol ; 293: 115269, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35398497

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been widely used in traditional Chinese medicines for the treatment of diabetic osteoporosis. However, the anti-diabetic osteoporotic active components of AR/PCC remain unclear. This study aimed to explore the major active ingredients in AR/PCC for its protective effects against bone deterioration induced by diabetes. MATERIALS AND METHODS: The aqueous extracts of AR/PCC with different proportions (AR:PCC = 1:3, 1:2, 1:1, 2:1 and 3:1, w/w) were prepared. Streptozotocin-induced diabetic rats were orally administrated with the AR/PCC extracts. The absorbed phytochemical compounds in serum of diabetic rats were identified by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry method and their contents in the AR/PCC extracts were determined by high performance liquid chromatography-ultraviolet detector-evaporative light scattering detector method. The absorbed compounds in the extracts were considered as the major potential active components in AR/PCC, and their combination was defined as M-AR/PCC. A component-knockout approach was applied to evaluate the contribution of each compound in M-AR/PCC. The larvae and adults of diabetic zebrafish models were then used to evaluated the anti-diabetic osteoporotic performance of the M-AR/PCC. The real-time reverse transcription polymerase chain reaction technique was applied to study the regulation effects of M-AR/PCC on osteogenesis and osteoclastgensis in diabetic zebrafish models. RESULTS: The phenotypes of diabetic osteoporosis rats induced by streptozotocin were reversed by the oral administration of AR/PCC extracts with different ratios, as evidenced by the increased bone mineral density, bone volume density, trabecular thickness, trabecular number, and decreased trabecular separation of femoral metaphysis. Seven phytochemical compounds were detected in the serum and their contents in AR/PCC varied dramatically with different proportions, including 1 xanthone glycoside and 6 alkaloids. By using diabetic zebrafish larvae model and compound-knockout strategy, each compound in M-AR/PCC were proved to play an indispensable role in the positive regulatory actions in the bone mass of diabetic zebrafish. Furthermore, the herb pair with a ratio of 1:1 and the related M-AR/PCC showed the best therapeutic effects on diabetic osteoporosis. They showed similar performances on the inhibition of the tartrate-resistant acid phosphatase activity and the promotion of the alkaline phosphatase activity in diabetic adult zebrafish model. The M-AR/PCC treatment could decrease the blood glucose, upregulate the mRNA expression levels of osteoblast-related genes (alp, runx2b and opg) and downregulate the expression of osteoclast-related genes (acp5α, rankl and sost) in streptozotocin-induced zebrafish. CONCLUSION: AR/PCC herb pair and its major active components possess potent anti-diabetic osteoporotic effect on streptozotocin-induced in vivo models. The combination of the seven active compounds derived from AR/PCC herbal pair could be a potential agent for protection against osteoporosis associated with diabetes.


Subject(s)
Anemarrhena , Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Osteoporosis , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/metabolism , Rats , Streptozocin , Zebrafish
18.
J Pharm Pharmacol ; 74(7): 1017-1026, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35353176

ABSTRACT

OBJECTIVE: Xanthohumol (XAN), a natural isoflavone from Humulus lupulus L., possesses biological activities on relieving oxidative stress and osteoporosis (OP). This study aimed to evaluate the antioxidative and osteoprotective effect of XAN on Aß-injured osteoblasts, and explore its underlying mechanism. METHODS: Osteoblasts were pretreated with XAN followed by stimulation with Aß1-42. Cell proliferation, ALP activity, bone mineralization and bone formation index were measured. Apoptosis and reactive oxygen species (ROS) were analysed with flow cytometer. PI3K inhibitor LY294002 or siRNA-Nrf2 was added and transfected in osteoblasts, to further confirm whether the pathway participated in the regulation of XAN-induced cytoprotection. KEY FINDINGS: XAN markedly improved the proliferation, differentiation and mineralization of Aß-injured osteoblasts. Additionally, XAN reduced cell apoptosis rate and ROS level, and increased the expression of p-AKT, Nrf2, NQO1, HO-1 and SOD-2. More importantly, LY294002 or siNrf2 abolished the beneficial effect of XAN on osteoblasts activity and decreased the PI3K expression and inhibited its downstream proteins, indicating XAN activated PI3K/AKT/Nrf2 pathway in Aß-injured osteoblasts. CONCLUSION: It was the first time to reveal the antioxidative and osteoprotective effect of XAN through regulating PI3K/AKT/Nrf2 pathway in Aß-injured osteoblasts, which provides reference for the clinical application of XAN in the prevention and treatment of OP.


Subject(s)
NF-E2-Related Factor 2 , Phosphatidylinositol 3-Kinases , Amyloid beta-Peptides/metabolism , Antioxidants/pharmacology , Apoptosis , Flavonoids , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Propiophenones , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
19.
Phytomedicine ; 98: 153982, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35168092

ABSTRACT

BACKGROUND: Our early studies performed on aged rats, ovariectomized (OVX) rats and diabetic mice, indicated the calciotropic role of Fructus Ligustri Lucidi (FLL), the fruit of Ligustrum lucidum Ait., in mediating calcium homeostasis which was partially attributed to its stimulation on renal calcium reabsorption. PURPOSE: This study aimed to explicate the underlying molecular mechanism and explore the potential bioactive ingredients in FLL. STUDY DESIGN AND METHODS: The OVX C57BL/6 J mice were orally administered with low (FL, 75 mg/kg), middle (FM, 225 mg/kg) or high (FH, 675 mg/kg) dose of extract of Fructus Ligustri Lucidi for 10 weeks. The biological properties of trabecular bone were measured by micro-CT and H&E staining. The molecular expression was assessed by immunoblotting and immunostaining. The potential active components were identified by cell membrane chromatography (CMC) and explored in renal tubular cells with Fluo-3/AM fluorescent staining to indicate intracellular calcium level. The male mice fed with high calcium diet (1.2% Ca) and orally treated with active components for 3 weeks. RESULTS: Treatment of OVX mice with FLL extract suppressed the elevation in urinary calcium level (FH, 0.081 ± 0.012, vs. OVX, 0.189 ± 0.038 mg/mg), and increased bone mineral density (FH, 62.41 ± 2.57, vs. OVX, 43.72 ± 8.43 mg/ccm) and percentage of trabecular bone area. It also decreased circulating PTH level (FH, 66.69 ± 10.94, vs. OVX, 303.50 ± 26.56 pg/ml) and up-regulated TRPV5 expression in renal cortex of OVX mice as well as enhanced the expression of PTH receptor (PTH1R) and the ratio of p-PKA/PKA. The PKA inhibitor H89 abolished the induction of serum, prepared from rats treated with FLL extract, on PKA/TRPV5 signaling in renal tubular cells. The CMC identified phenol glycosides, including salidroside and oleuropein, which increased intracellular calcium content, promoted expression of PTH1R and TRPV5 and ratio of p-PKA/PKA as well as decreased calcium excretion in urine of mice fed with high calcium diet. CONCLUSION: Salidroside and oleuropein are major ingredients contributing to the anti-hypercalciuria effects of FLL via acting on PTH1R/PKA/TRPV5 signaling in kidney. Further translational research would be required.

20.
Biopharm Drug Dispos ; 43(1): 11-22, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34914109

ABSTRACT

Xanthohumol, a natural isoflavone from Humulus lupulus L., possesses biological activities. However, the biological fate of xanthohumol in vivo remains unclear. The aim of this study was to investigate the absorption and metabolism of xanthohumol in rats through UPLC-MS/MS. The plasma, urine and fecal samples were collected after oral administration of xanthohumol (25, 50, 100 mg/kg) in SD rats. The contents of xanthohumol and its metabolites were determined by UPLC-MS/MS. A total of 6 metabolites of xanthohumol were identified in rats, including methylated, glucuronidated, acid-catalyzed cyclization and oxidation, indicating xanthohumol underwent phase I and II metabolism. Besides, isoxanthohumol was the major metabolites of xanthohumol. Xanthohumol was rapidly absorbed, metabolized, and eliminated in rats. The pharmacokinetics results showed the Tmax of xanthohumol and isoxanthohumol were 3 and 2.33 h, respectively. The AUC0-t of xanthohumol and isoxanthohumol were 138.83 ± 6.03 and 38.77 ± 4.46 ng/ml·h, respectively. Furthermore, xanthohumol was mainly excreted in the form of prototype through feces and a small amount of xanthohumol was excreted through urine. These results illustrated the absorption, metabolism, and pharmacokinetics process of xanthohumol in rats, and provided a reference for the further rational applications.


Subject(s)
Flavonoids , Propiophenones , Administration, Oral , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Flavonoids/metabolism , Flavonoids/pharmacokinetics , Propiophenones/metabolism , Propiophenones/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...